[ODE] Instantaneous reversal of velocity: possible with motor?

nlin@nlin.net nlin at nlin.net
Wed Mar 20 20:56:01 2002


I'm trying to use a motor to simulate an extremely quickly and powerfully
rotating mechanical part which should be able to reverse its angular
velocity within one timestep.

I have set global and joint ERP to (almost) 1.0 and CFM to (almost) 0.0,
but the body still takes a few moments to switch from rotating in one
direction to rotating in the other direction. I have allowed maximum
force of up to 1.e20 and still the body takes several frames to reverse
its velocity when I change the motor angular velocity.

I thought motors were supposed to be able to set the velocity within exactly
one timestep. Am I missing something? 

Here's my source code, a hacked-up version of test_boxstack. When you run
it one spinning box will appear; press any key (e.g. l) to cause the box
to reverse direction.

Thanks,
-Norman

#include <ode/ode.h>
#include <drawstuff/drawstuff.h>

#ifdef MSVC
#pragma warning(disable:4244 4305)  // for VC++, no precision loss complaints
#endif

// select correct drawing functions

#ifdef dDOUBLE
#define dsDrawBox dsDrawBoxD
#define dsDrawSphere dsDrawSphereD
#define dsDrawCylinder dsDrawCylinderD
#define dsDrawCappedCylinder dsDrawCappedCylinderD
#endif


// some constants

#define NUM 200			// max number of objects
#define DENSITY (5.0)		// density of all objects
#define GPB 3			// maximum number of geometries per body


//   dJointID hinge;
   dJointID motor;
// dynamics and collision objects

struct MyObject {
  dBodyID body;			// the body
  dGeomID geom[GPB];		// geometries representing this body
};

static int num=0;		// number of objects in simulation
static int nextobj=0;		// next object to recycle if num==NUM
static dWorldID world;
static dSpaceID space;
static MyObject obj[NUM];
static dJointGroupID contactgroup;
static int selected = -1;	// selected object


// this is called by dSpaceCollide when two objects in space are
// potentially colliding.

static void nearCallback (void *data, dGeomID o1, dGeomID o2)
{
  int i;
  // if (o1->body && o2->body) return;

  // exit without doing anything if the two bodies are connected by a joint
  dBodyID b1 = dGeomGetBody(o1);
  dBodyID b2 = dGeomGetBody(o2);
  if (b1 && b2 && dAreConnected (b1,b2)) return;

  dContact contact[3];			// up to 3 contacts per box
  for (i=0; i<3; i++) {
    contact[i].surface.mode = dContactBounce; //dContactMu2;
    contact[i].surface.mode = 0;
    contact[i].surface.mu = dInfinity;
    contact[i].surface.mu2 = 0;
    contact[i].surface.bounce = 5.5;
    contact[i].surface.bounce_vel = 9.1;
    contact[i].surface.bounce = 0.9;
    contact[i].surface.bounce_vel = 0.9;
  }
  if (int numc = dCollide (o1,o2,3,&contact[0].geom,sizeof(dContact))) {
    // dMatrix3 RI;
    // dRSetIdentity (RI);
    // const dReal ss[3] = {0.02,0.02,0.02};
    for (i=0; i<numc; i++) {
      dJointID c = dJointCreateContact (world,contactgroup,contact+i);
      dJointAttach (c,b1,b2);
      // dsDrawBox (contact[i].geom.pos,RI,ss);
    }
  }
}


// start simulation - set viewpoint

static void start()
{
  static float xyz[3] = {2.1640f,-1.3079f,1.7600f};
  static float hpr[3] = {125.5000f,-17.0000f,0.0000f};
  dsSetViewpoint (xyz,hpr);
  printf ("To drop another object, press:\n");
  printf ("   b for box.\n");
  printf ("   s for sphere.\n");
  printf ("   c for cylinder.\n");
  printf ("   x for a composite object.\n");
  printf ("To select an object, press space.\n");
  printf ("To disable the selected object, press d.\n");
  printf ("To enable the selected object, press e.\n");
}


char locase (char c)
{
  if (c >= 'A' && c <= 'Z') return c - ('a'-'A');
  else return c;
}


// called when a key pressed

static void command (int cmd)
{
  int i,j,k;
  dReal sides[3];
  dMass m;

  static int vel=-2;
  vel = -vel;
   dJointSetAMotorParam(motor, dParamVel3, vel);
  cmd = locase (cmd);
  if (cmd == 'b' || cmd == 's' || cmd == 'c' || cmd == 'x') {
    if (num < NUM) {
      i = num;
      num++;
    }
    else {
      i = nextobj;
      nextobj++;
      if (nextobj >= num) nextobj = 0;

      // destroy the body and geoms for slot i
      dBodyDestroy (obj[i].body);
      for (k=0; k < GPB; k++) {
	if (obj[i].geom[k]) dGeomDestroy (obj[i].geom[k]);
      }
      memset (&obj[i],0,sizeof(obj[i]));
    }

    obj[i].body = dBodyCreate (world);
    for (k=0; k<3; k++) sides[k] = dRandReal()*0.5+0.1;
    for (k=0; k<3; k++) sides[k] = 1;

    dBodySetPosition (obj[i].body,
		      dRandReal()*2-1,dRandReal()*2-1,dRandReal()+1);
    dBodySetPosition (obj[i].body,
		      0,0,5);
    dMatrix3 R;
    dRFromAxisAndAngle (R,dRandReal()*2.0-1.0,dRandReal()*2.0-1.0,
			dRandReal()*2.0-1.0,dRandReal()*10.0-5.0);
    dRFromAxisAndAngle (R,1,0,0,90);
    dBodySetRotation (obj[i].body,R);
    dBodySetData (obj[i].body,(void*) i);

    if (cmd == 'b') {
      dMassSetBox (&m,DENSITY,sides[0],sides[1],sides[2]);
      obj[i].geom[0] = dCreateBox (space,sides[0],sides[1],sides[2]);
    }
    else if (cmd == 'c') {
      sides[0] *= 0.5;
      dMassSetCappedCylinder (&m,DENSITY,3,sides[0],sides[1]);
      obj[i].geom[0] = dCreateCCylinder (space,sides[0],sides[1]);
    }
    else if (cmd == 's') {
      sides[0] *= 0.5;
      dMassSetSphere (&m,DENSITY,sides[0]);
      obj[i].geom[0] = dCreateSphere (space,sides[0]);
    }
    else if (cmd == 'x') {
      dGeomID g2[GPB];		// encapsulated geometries
      dReal dpos[GPB][3];	// delta-positions for encapsulated geometries

      // start accumulating masses for the encapsulated geometries
      dMass m2;
      dMassSetZero (&m);

      // set random delta positions
      for (j=0; j<GPB; j++) {
	for (k=0; k<3; k++) dpos[j][k] = dRandReal()*0.3-0.15;
      }

      for (k=0; k<3; k++) {
	obj[i].geom[k] = dCreateGeomTransform (space);
	dGeomTransformSetCleanup (obj[i].geom[k],1);
	if (k==0) {
	  dReal radius = dRandReal()*0.25+0.05;
	  g2[k] = dCreateSphere (0,radius);
	  dMassSetSphere (&m2,DENSITY,radius);
	}
	else if (k==1) {
	  g2[k] = dCreateBox (0,sides[0],sides[1],sides[2]);
	  dMassSetBox (&m2,DENSITY,sides[0],sides[1],sides[2]);
	}
	else {
	  dReal radius = dRandReal()*0.1+0.05;
	  dReal length = dRandReal()*1.0+0.1;
	  g2[k] = dCreateCCylinder (0,radius,length);
	  dMassSetCappedCylinder (&m2,DENSITY,3,radius,length);
	}
	dGeomTransformSetGeom (obj[i].geom[k],g2[k]);

	// set the transformation (adjust the mass too)
	dGeomSetPosition (g2[k],dpos[k][0],dpos[k][1],dpos[k][2]);
	dMassTranslate (&m2,dpos[k][0],dpos[k][1],dpos[k][2]);
	dMatrix3 Rtx;
	dRFromAxisAndAngle (Rtx,dRandReal()*2.0-1.0,dRandReal()*2.0-1.0,
			    dRandReal()*2.0-1.0,dRandReal()*10.0-5.0);
	dGeomSetRotation (g2[k],Rtx);
	dMassRotate (&m2,Rtx);

	// add to the total mass
	dMassAdd (&m,&m2);
      }

      // move all encapsulated objects so that the center of mass is (0,0,0)
      for (k=0; k<2; k++) {
	dGeomSetPosition (g2[k],
			  dpos[k][0]-m.c[0],
			  dpos[k][1]-m.c[1],
			  dpos[k][2]-m.c[2]);
      }
      dMassTranslate (&m,-m.c[0],-m.c[1],-m.c[2]);
    }

    for (k=0; k < GPB; k++) {
      if (obj[i].geom[k]) dGeomSetBody (obj[i].geom[k],obj[i].body);
    }

    dBodySetMass (obj[i].body,&m);
  }

  if (cmd == ' ') {
    selected++;
    if (selected >= num) selected = 0;
    if (selected < 0) selected = 0;
  }
  else if (cmd == 'd' && selected >= 0 && selected < num) {
    dBodyDisable (obj[selected].body);
  }
  else if (cmd == 'e' && selected >= 0 && selected < num) {
    dBodyEnable (obj[selected].body);
  }
}


// draw a geom

void drawGeom (dGeomID g, const dReal *pos, const dReal *R)
{
  if (!g) return;
  if (!pos) pos = dGeomGetPosition (g);
  if (!R) R = dGeomGetRotation (g);

  int type = dGeomGetClass (g);
  if (type == dBoxClass) {
    dVector3 sides;
    dGeomBoxGetLengths (g,sides);
    dsDrawBox (pos,R,sides);
  }
  else if (type == dSphereClass) {
    dsDrawSphere (pos,R,dGeomSphereGetRadius (g));
  }
  else if (type == dCCylinderClass) {
    dReal radius,length;
    dGeomCCylinderGetParams (g,&radius,&length);
    dsDrawCappedCylinder (pos,R,length,radius);
  }
  else if (type == dGeomTransformClass) {
    dGeomID g2 = dGeomTransformGetGeom (g);
    const dReal *pos2 = dGeomGetPosition (g2);
    const dReal *R2 = dGeomGetRotation (g2);
    dVector3 actual_pos;
    dMatrix3 actual_R;
    dMULTIPLY0_331 (actual_pos,R,pos2);
    actual_pos[0] += pos[0];
    actual_pos[1] += pos[1];
    actual_pos[2] += pos[2];
    dMULTIPLY0_333 (actual_R,R,R2);
    drawGeom (g2,actual_pos,actual_R);
  }
}


// simulation loop

static void simLoop (int pause)
{
  dsSetColor (0,0,2);
  dSpaceCollide (space,0,&nearCallback);
  if (!pause) dWorldStep (world,0.05);

  // remove all contact joints
  dJointGroupEmpty (contactgroup);

  dsSetColor (1,1,0);
  dsSetTexture (DS_WOOD);
  for (int i=0; i<num; i++) {
    int color_changed = 0;
    if (i==selected) {
      dsSetColor (0,0.7,1);
      color_changed = 1;
    }
    else if (! dBodyIsEnabled (obj[i].body)) {
      dsSetColor (1,0,0);
      color_changed = 1;
    }
    for (int j=0; j < GPB; j++) drawGeom (obj[i].geom[j],0,0);
    if (color_changed) dsSetColor (1,1,0);
  }
}


int main (int argc, char **argv)
{
  // setup pointers to drawstuff callback functions
  dsFunctions fn;
  fn.version = DS_VERSION;
  fn.start = &start;
  fn.step = &simLoop;
  fn.command = &command;
  fn.stop = 0;
  fn.path_to_textures = "../../drawstuff/textures";

  // create world

  world = dWorldCreate();
  space = dHashSpaceCreate();
  contactgroup = dJointGroupCreate (0);
  dWorldSetGravity (world,0.0,0,0.0);
  dWorldSetCFM (world,1e-5);
  dWorldSetERP (world,1.0);
  // dWorldSetCFM (world,0);
  dCreatePlane (space,0,0,1,0);
  memset (obj,0,sizeof(obj));




  dReal sides[3];
  dMass m;
   int i,k;
    if (num < NUM) {
      i = num;
      num++;
    }
    else {
      i = nextobj;
      nextobj++;
      if (nextobj >= num) nextobj = 0;

      // destroy the body and geoms for slot i
      dBodyDestroy (obj[i].body);
      for (k=0; k < GPB; k++) {
	if (obj[i].geom[k]) dGeomDestroy (obj[i].geom[k]);
      }
      memset (&obj[i],0,sizeof(obj[i]));
    }

    obj[i].body = dBodyCreate (world);
    for (k=0; k<3; k++) sides[k] = 1;
    dBodySetPosition (obj[i].body,
		      0,0,2);
    dMatrix3 R;
    dRFromAxisAndAngle (R,1,0,0,0);
    dBodySetRotation (obj[i].body,R);
    dBodySetData (obj[i].body,(void*) i);
    dMassSetBox (&m,DENSITY,sides[0],sides[1],sides[2]);
    obj[i].geom[0] = dCreateBox (space,sides[0],sides[1],sides[2]);
    for (k=0; k < GPB; k++) {
      if (obj[i].geom[k]) dGeomSetBody (obj[i].geom[k],obj[i].body);
    }
    dBodySetMass (obj[i].body,&m);

     dBodyID b2;
     b2 = dBodyCreate(world);
    dRFromAxisAndAngle (R,1,0,0,0);
    dBodySetPosition (b2,
		      0,0,4);
    dBodySetRotation (b2,R);
    dBodySetData (b2,(void*) i);
    dMassSetBox (&m,DENSITY,sides[0],sides[1],sides[2]);
    dBodySetMass (b2,&m);


   dJointID j2;

    j2 = dJointCreateFixed(world,0);
    dJointAttach(j2,b2,0);

    motor = dJointCreateAMotor (world,0);

    dJointAttach (motor,obj[i].body,b2);

    dJointSetAMotorNumAxes (motor,3);
    dJointSetAMotorAxis (motor,0,1, 0,0,1);
    dJointSetAMotorAxis (motor,2,2, 1,0,0);
    dJointSetAMotorMode (motor,dAMotorEuler);

        const float stop = 0.0;
        //      const float stop_cfm = 0.01;
        //      const float stop_erp = 0.8;
        const float stop_cfm = 0.0;
        const float stop_erp = 1.0;
        dJointSetAMotorMode(motor,dAMotorEuler);
        dJointSetAMotorAxis(motor,0,1,0,0,1);
        dJointSetAMotorAxis(motor,2,2,0,1,0);
//        dJointSetAMotorParam(motor,dParamLoStop,-stop);  // twist
        dJointSetAMotorParam(motor,dParamHiStop,stop);
        dJointSetAMotorParam(motor,dParamVel,0);
        dJointSetAMotorParam(motor,dParamFMax,0);
//        dJointSetAMotorParam(motor,dParamLoStop2,-stop);  // back
//        dJointSetAMotorParam(motor,dParamHiStop2,stop);   // front
        dJointSetAMotorParam(motor,dParamVel2,0);
        dJointSetAMotorParam(motor,dParamFMax2,0);
//        dJointSetAMotorParam(motor,dParamLoStop3,-stop);  // back
//        dJointSetAMotorParam(motor,dParamHiStop3,stop);   // front
        dJointSetAMotorParam(motor,dParamVel3,2);
        dJointSetAMotorParam(motor,dParamFMax3,1.e10);
        dJointSetAMotorParam(motor,dParamStopERP,stop_erp);
        dJointSetAMotorParam(motor,dParamStopCFM,stop_cfm);
        dJointSetAMotorParam(motor,dParamStopERP2,stop_erp);
        dJointSetAMotorParam(motor,dParamStopCFM2,stop_cfm);
        dJointSetAMotorParam(motor,dParamStopERP3,stop_erp);
        dJointSetAMotorParam(motor,dParamStopCFM3,stop_cfm);
        dJointSetAMotorParam(motor,dParamBounce,0);
        dJointSetAMotorParam(motor,dParamBounce2,0);
        dJointSetAMotorParam(motor,dParamBounce3,0);














  // run simulation
  dsSimulationLoop (argc,argv,352,288,&fn);

  dJointGroupDestroy (contactgroup);
  dSpaceDestroy (space);
  dWorldDestroy (world);

  return 0;
}